Stochastic vector redirects here. For the concept of a random vector, see Multivariate random variable.
In mathematics and statistics, a probability vector or stochastic vector is a vector with non-negative entries that add up to one.
The positions (indices) of a probability vector represent the possible outcomes of a discrete random variable, and the vector gives us the probability mass function of that random variable, which is the standard way of characterizing a discrete probability distribution.
Here are some examples of probability vectors:
Writing out the vector components of a vector as
the vector components must sum to one:
One also has the requirement that each individual component must have a probability between zero and one:
for all . These two requirements show that stochastic vectors have a geometric interpretation: A stochastic vector is a point on the "far face" of a standard orthogonal simplex. That is, a stochastic vector uniquely identifies a point on the face opposite of the orthogonal corner of the standard simplex.